A once in a lifetime opportunity

This post is a diversion from my regular posts about the biological side of nature and this time I’m delving into the more fundamental aspects of physical nature.

Peter Higgs is a colossus of modern theoretical physics who was awarded the Nobel proze for physics in 2013 for his prediction of the presence of the ‘Higgs boson‘ – the so called ‘God particle‘ which is accredited with conferring mass on other sub-atomic particles. In my professional life I’m a  mass spectrometrist so experiments to determine the nature of mass itself are of immense interest. In order to prove Higgs’ theory, one of the biggest and most expensive scientific experiments ever devised was built at the ‘Conseil européen pour la Recherche nucléaire‘ or CERN, in Geneva, Switzerland. It’s called the ‘Large Hadron Collider‘ or LHC. The idea of a collider is that sub atomic particles (hadrons) can be crashed together at incomprehensibly huge energies to smash them into their constituent parts which can then be analysed. At the moment the theory of these elementary particles, which are the building blocks of all the matter in the known Universe, is described by the ‘Standard Model, but there are holes in the Model such as ‘what is dark matter?’ or ‘why is there more matter than antimatter in the Universe?’. So it’s hoped that high energy colliders such as the LHC will enable us to probe deeper into the fundamental building blocks of everything and fill the holes in the Standard Model.

In August last year I attended a conference in Geneva and one of the social events was a trip to the LHC at CERN, and that’s one of those opportunities that can’t be ignored. So, even though this isn’t ‘nature‘ as such, I hope I can justify sharing it here!

A status pannel for the LHC indicating what it’s actually doing

Everything about the LHC is mind boggling. It’s a circular tunnel 27km in circumference under Geneva and the Jura mountains on the Swiss/French border. It’s designed to accelerate small beams of protons in opposite directions to as close to the speed of light as possible, before colliding them inside one of four detectors around the ring. The protons are generated by stripping the electron away from hydrogen atoms leaving the free hydrogen nucleus (consisting of a single proton) to be fed into the accelerator. The collided protons eliminate each other and in the process give off collosal amounts of energy in the form of X-rays and gamma rays and sub atomic particles.

Access to the ring is only possible when the beam is turned off because of the intense radiation generated by the colliding particles. Until now the ring has only been operating at 50% power (but even at half power definitive evidence for the existence of the Higgs boson was found) and it was shutdown for an upgrade to enable it to operate at full power. After the upgrade, which was scheduled for completion at the end of 2014, there will be no access for several years whilst further experiments are underway, so I consider myself extremely fortunate to have got in to have a look. Even at half power the protons approached close to the speed of light but higher speed will give higher energy collisions and more information about the fundamental structure of matter.

The end of one of the sections of the ring on the test rig prior to installation in the LHC

To accelerate the protons to near light speed takes a lot of circuits around the ring and I think we were told that that takes around 40 minutes. The ring itself is made up of sections approximately 30m long containing superconducting electromagnets which carry the beam line and a tube for liquid helium which cools the ring down to approximately 1-2oC above absolute zero (-273oC). At this unbelievably cold temperature (colder than outer space according to CERN) the magnets become superconducting and can accelerate and guide the contra-rotating proton beams up to collision speed. To collide the two beams, which are only a few μm in diameter, has been likened to firing two needles at each other from 10km apart with sufficient accuracy that they meet in the middle – quite a technological challenge!

The other consequence of cooling the ring down to such a low temperature is thermal contraction, and at the operating temperature of -271.3oC the 27km ring decreases in circumference by approximately 0.003% – which may not sound like much but is in reality around 80m!

There are four main detectors on the LHC called CMS, Atlas, ALICE and LHCb and the one that I was privileged enough to visit was the CMS (Compact Muon Solenoid – I can’t help but wonder if this is the compact version what a full size one would look like):

The CMS detector of the LHC. The spike in the middle carries the proton beam line

Here, the two ends of the CMS detector – which has been likened by some to the Rose Window in the Notre Dame cathedral – had been moved apart during the upgrade so all this wouldn’t normally be visible. This vast machine is approximately 21m long, 15m in diameter and weighs 12,500 tonnes. Truly gigantic – the tinyest natural phenomena are being probed by the most enormous machines!

Some more brain-frying facts and figures aabout the LHC!

It can be seen from the diagram that each proton beam contains:

110,000,000,000 protons. At 99.9998% of the speed of light the energy of one proton is:

450,000,000,000eV. And at 99.9999991% the speed of light the energy is:


So an increase in velocity of 0.0001991% gives a vast increase in energy of nearly 16 fold. But 7TeV is only half power and the plan is ultimately to run the LHC at 15TeV… and the plan after that is to build another collider 100km in circumference!

It can be argued that spending the colossal amounts of money required to conduct this type of science could be better spent on for example developing solutions to climate change. But being a scientist I’m a firm believer in conducting fundamental blue sky research and CERN was concieved by one of the greatest theoretical physicists of them all, Louis de Broglie, after WW2 as a means of fostering international cooperation in fundamental physics. So as well as immense scientific and technological developments which includes the world wide web (invented by Tim Berners Lee whilst he was a scientist at CERN) I think CERN has played a key role in enabling many countries to engage with each other in an ostensibly apolitical fashion, and that could ultimately help to foster the spirit of international cooperation required to solve the other big problems.

If this interests you and you want to read more have a look at the CERN website. As you might expect it’s brim full of fascinating stuff!


9 responses to “A once in a lifetime opportunity

  1. You must have felt like the proverbial kid in a candy shop, Finn–were you able to get any sleep the night before? You have provided a wealth of clear, concise information here, and it obviously took you some time to write it up. It is truly amazing what we as a species are capable of, and yet so many of us seem to harbor an irrepressible need to bicker and quarrel and try to hurt others. I’m grateful that you are among the rest of us. Beautiful post!

    • Hello Gary, I certainly was, it was an amazing way to spend an afternoon, I was very lucky! I did get to sleep but I was properly excited too.

      And I think you’re dead right, it’s awe inspiring what can be done when we focus on creating instead of destroying and the LHC is a great example of that. And now it’s running again and up at full power, and it’s hoped it will shed light on the dark matter of the universe. Can’t wait to see what they discover.

  2. I WAS going to make a joke about how Mr Higgs reminded me of the Higgs boson particle and then realised that this IS about the Higgs boson thus scuttling my clever witt ;). You are a mass spectrometrist?! I thought that mass spectrometrists were not allowed to deal with the general public due to the enormous size of their cranial capacities overwhelming and deflating the much smaller brains of “normal people” ;). I am erring on the side of caution when it comes to the Higgs bosun. I think that science is a grey area when it comes to what is and isn’t good for the earth and its people. I am sure that it is enormously exciting to be in on the ground floor of something this cutting edge but I just remember that old adage about rushing in where angels fear to tread and not all scientists are merely interested in what makes things work. I am in no way disparaging Mr Higgs or this incredible discovery. I am saying that sometimes the most interesting and noble of discoveries have been taken by nefarious people and used to create the most terrifying and destructive things. I am sure that Albert Einstein would be with me on this one…

    • Oh thou dost flatter me! But that’s OK, I’ll trouser a bit of flattery 🙂 But mass speccies are no more cranially endowed than the average permaculturalist, we’re just aimed in a different direction.

      BTW I don’t agree about science being a grey area – science is science. What is nebulous and often nefarious is the way that people abuse it to make it say what they want it to say rather than what it actually says. E.g. all those climate change deniers who are either complete fuckwits or in the pay of fossil fuel companies (or both – they’re by no means mutually exclusive), or those who argue for GM while at the same time ignoring the vast quantity of waste food etc, etc, it’s very easy to be lazy and only take one side of an argument because it’s convenient. And I think it’s part of human nature to want to do bad stuff to other people and like I suggested to Pat in the adjacent comment, should we really not do science because some lunatic might do bad stuff with the results? I don’t think it makes sense to run things in that way. What do you reckon?

      • Like I said, nothing wrong with the science, just be cautious about the eventualities. Scientists are very enthusiastic about their inventions and have driven the course of society BUT they have also opened up cans of worms that can’t be closed. Just calling for cautions sake is all, not mass abandonment of science for witch doctors and mojo ;).

  3. That must have been an amazing experience. It looks impressive enough on TV, but to see it in person would be something else. I must admit my mind is utterly boggled, but the whole thing is awe inspiring even for those of us who don’t understand it.

    • It was one of the coolest tings I’ve ever done, I never thought I’d get to see down there but I’m very pleased that I did. TV pictures just don’t prepare you for the immense scale of the thing – it was a total gobsmacker!

  4. A fascinating visit! Although as a lifelong science fiction fan I am both mightily impressed and a teensy bit scared by projects like the LHC. I worry there is something fundamental that we just don’t understand enough about to tell if our actions or findings will be terminally dangerous…
    All the best 🙂

    • Hello Pat, it was pretty awesome! I know what you mean too, but I think we always make things terminally dangerous anyway, so I reckon we should go for it or we’d never do anything. And on the other hand we developed rockets to deliver bombs, and then we used them to get to the moon, and land mass spectrometers on comets…

Please share your thoughts:

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s